Non-Fiction Books:

The Physical Signature of Computation

A Robust Mapping Account
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Hardback
$301.00
Releases

Pre-order to reserve stock from our first shipment. Your credit card will not be charged until your order is ready to ship.

Available for pre-order now
Free Delivery with Primate
Join Now

Free 14 day free trial, cancel anytime.

Buy Now, Pay Later with:

4 payments of $75.25 with Afterpay Learn more

6 weekly interest-free payments of $50.17 with Laybuy Learn more

Pre-order Price Guarantee

If you pre-order an item and the price drops before the release date, you'll pay the lowest price. This happens automatically when you pre-order and pay by credit card or pickup.

If paying by PayPal, Afterpay, Laybuy, Zip, Klarna, POLi, Online EFTPOS or internet banking, and the price drops after you have paid, you can ask for the difference to be refunded.

If Mighty Ape's price changes before release, you'll pay the lowest price.

Availability

This product will be released on

Delivering to:

It should arrive:

  • 7-14 June using International Courier

Description

In The Physical Signature of Computation, Neal Anderson and Gualtiero Piccinini articulate and defend the robust mapping account--the most systematic, rigorous, and comprehensive account of computational implementation to date. Drawing in part from recent results in physical information theory, they argue that mapping accounts of implementation can be made adequate by incorporating appropriate physical constraints. According to the robust mapping account, the key constraint on mappings from physical to computational states--the key for establishing that a computation is physically implemented--is physical-computational equivalence: evolving physical states bear neither more nor less information about the evolving computation than do the computational states they map onto. When this highly nontrivial constraint is satisfied, among others that are spelled out as part of the account, a physical system can be said to implement a computation in a robust sense, which means that the system bears the physical signature of the computation. Anderson and Piccinini apply their robust mapping account to important questions in physical foundations of computation and cognitive science, including the alleged indeterminacy of computation, pancomputationalism, and the computational theory of mind. They show that physical computation is determinate, nontrivial versions of pancomputationalism fail, and cognition involves computation only insofar as neurocognitive systems bear the physical signature of specific computations. They also argue that both consciousness and physics outstrip computation.

Author Biography:

Neal G. Anderson is Professor of Electrical and Computer Engineering at the University of Massachusetts Amherst, where his research and teaching has emphasized various aspects of physical electronics. His current research focuses are the physical dimensions of information and computation, their physical-information-theoretic description, and their implications for our fundamental understanding of information processing and for future information technologies. Gualtiero Piccinini is Curators' Distinguished Professor of Philosophy and Associate Director of the Center for Neurodynamics at the University of Missouri--St. Louis. In 2014, he received the Herbert A. Simon Award from the International Association for Computing and Philosophy. In 2018, he received the K. Jon Barwise Prize from the American Philosophical Association. In 2019, he received the Chancellor's Award for Research and Creativity from University of Missouri - St. Louis. His publications include Physical Computation: A Mechanistic Account (OUP 2015), Neurocognitive Mechanisms: Explaining Biological Cognition (OUP 2020), and The Computational Theory of Mind (with Matteo Colombo, 2023).
Release date NZ
June 1st, 2024
Pages
336
Audience
  • Postgraduate, Research & Scholarly
Illustrations
14 line drawings
ISBN-13
9780198833642
Product ID
38520921

Customer previews

Nobody has previewed this product yet. You could be the first!

Write a Preview

Help & options

Filed under...