Non-Fiction Books:

Quantum Triangulations

Moduli Space, Quantum Computing, Non-Linear Sigma Models and Ricci Flow


Paperback / softback

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Quantum Triangulations by Mauro Carfora
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 10-14 days


Delivering to:

Estimated arrival:

  • Around 11-18 October using standard courier delivery


This book discusses key conceptual aspects and explores the connection between triangulated manifolds and quantum physics, using a set of case studies ranging from moduli space theory to quantum computing to provide an accessible introduction to this topic. Research on polyhedral manifolds often reveals unexpected connections between very distinct aspects of mathematics and physics. In particular, triangulated manifolds play an important role in settings such as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, critical phenomena and complex systems. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is also often a consequence of an underlying structure that naturally calls into play non-trivial aspects of representation theory, complex analysis and topology in a way that makes the basic geometric structures of the physical interactions involved clear. This second edition further emphasizes the essential role that triangulations play in modern mathematical physics, with a new and highly detailed chapter on the geometry of the dilatonic non-linear sigma model and its subtle and many-faceted connection with Ricci flow theory. This connection is treated in depth, pinpointing both the mathematical and physical aspects of the perturbative embedding of the Ricci flow in the renormalization group flow of non-linear sigma models. The geometry of the dilaton field is discussed from a novel standpoint by using polyhedral manifolds and Riemannian metric measure spaces, emphasizing their role in connecting non-linear sigma models' effective action to Perelman's energy-functional. No other published account of this matter is so detailed and informative. This new edition also features an expanded appendix on Riemannian geometry, and a rich set of new illustrations to help the reader grasp the more difficult points of the theory. The book offers a valuable guide for all mathematicians and theoretical physicists working in the field of quantum geometry and its applications.

Author Biography

Mauro Carfora, 19 received his Laurea in Physics from the University of Rome La Sapienza in 1977, and his PhD from University of Texas at Dallas in 1981. He has held positions at several Italian Universities and is a full professor of Mathematical Physics at the University of Pavia since 2001. Also, he has held visiting positions in universities and research institutions abroad, among which the University of California at Berkeley and Santa Barbara, USA, and the Nils Bohr Institute, Copenhagen, Denmark. His research interests include Geometrical Analysis, and Combinatorial methods in theoretical and mathematical Physics. Applications in quantum gravity and moduli space theory. Ricci flow on Riemannian manifolds. Applications of geometric flows to theoretical and mathematical Phyics. Renormalization group flow and geometrical flows. Relativistic cosmology. Annalisa Marzuoli received her Laurea in Physics in 1979. She held a research fellowship of the National Research Council in Mathematical Physics from 1979-1984. Then she was a researcher in Theoretical Physics, until she became an associate professor in 2000, all at the University of Pavia. Her current fields of research include geometric and algebraic aspects of condensed matter systems (graphene and topological insulators) and of Topological Quantum Field Theories, with applications to quantum computing. Quantum integrable systems, their semiclassical analysis and relations with the Askey-Wilson scheme of hypergeometric orthogonal polynomials, with applications to atomic and molecular physics and to discretized gravity models. Improvement of interconnected algebraic, geometric and combinatorial methods to model many-body (quantum and lattice) systems.
Release date NZ
November 28th, 2017
Country of Publication
2nd ed. 2017
97 Tables, color; 92 Illustrations, color; 21 Illustrations, black and white; XX, 392 p. 113 illus., 92 illus. in color.
Springer International Publishing AG
Product ID

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...

Buy this and earn 856 Banana Points