Non-Fiction Books:

Quantum Transport Theory for AC Response and Its Combination with Electromagnetic Method



Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Quantum Transport Theory for AC Response and Its Combination with Electromagnetic Method by Zhenyu Yin
Sorry, this product is not currently available to order


This dissertation, "Quantum Transport Theory for AC Response and Its Combination With Electromagnetic Method" by Zhenyu, Yin, 殷振宇, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The time-dependent quantum transport theory has attracted a great deal of interest in the past decade. However, some concepts in the frequency-dependent transport theory remain confused. Based on the Keldysh non-equilibrium green's function formalism for time-dependent quantum transport, new expressions for dynamic current and admittance are derived in this thesis, which satisfy gauge invariance and current continuity. The key concepts in this field are clarified. The derivation is under wideband limit (WBL) and first order approximations. This new formalism is validated by first-principle time-dependent calculations of three carbon-based nano-devices. Later a study on asymmetric systems is carried out by this new theory, and discussion on current conversation problem is presented. This new ac quantum transport theory can cooperate with electromagnetic method to solve a mesoscopic problem. The active core part which is usually under atomistic scale is simulated by frequency-domain quantum transport theory, while the broad environment is tackled with electromagnetic solver. By a careful treatment at the interface between two solvers, this quantum mechanic / electromagnetic (QM/EM) method is implemented self-consistently. This QM/EM method is also validated by calculations of the transient current through a carbon-nanotube based device surrounded by silicon environment under a small ac bias voltage. The small signal and WBL approximations are also adopted in the development of this method. As a supplementary to the family of QM/EM methods (static and time-dependent QM/EM method are already established), this method shows very good efficient and high accuracy. Beyond linear response in frequency domain, we have also studied some nonlinear effects. As one application of nonlinear effect, memristor has attracted great attention in the past few years. Through Fourier analysis method, we have now understood the physical and mathematical mechanisms of ideal memristor, memcapacitor and meminductor. We have proposed methods to verify ideal memristor, memcapacitor and memdicutor, and to find out their intrinsic parameters which can be employed to predict their behavior under various input signals. This study may also provide an instruction on experimental research. DOI: 10.5353/th_b5387998 Subjects: Quantum theoryTransport theory
Release date NZ
January 27th, 2017
Created by
Country of Publication
United States
colour illustrations
Open Dissertation Press
Product ID

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
Filed under...

Buy this and earn 829 Banana Points