Non-Fiction Books:

Photoelectrochemical Engineering for Solar Harvesting

Chemistry, Materials, Devices
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Paperback / softback
$627.00
Releases

Pre-order to reserve stock from our first shipment. Your credit card will not be charged until your order is ready to ship.

Available for pre-order now
Free Delivery with Primate
Join Now

Free 14 day free trial, cancel anytime.

Buy Now, Pay Later with:

4 payments of $156.75 with Afterpay Learn more

6 weekly interest-free payments of $104.50 with Laybuy Learn more

Pre-order Price Guarantee

If you pre-order an item and the price drops before the release date, you'll pay the lowest price. This happens automatically when you pre-order and pay by credit card or pickup.

If paying by PayPal, Afterpay, Laybuy, Zip, Klarna, POLi, Online EFTPOS or internet banking, and the price drops after you have paid, you can ask for the difference to be refunded.

If Mighty Ape's price changes before release, you'll pay the lowest price.

Availability

This product will be released on

Delivering to:

It should arrive:

  • 24 Jun - 1 Jul using International Courier

Description

Photoelectrochemical Engineering for Solar Harvesting: Chemistry, Materials, Devices provides an up-to-date appraisal of the photon engineering of innovative catalysts for solar energy harvesting. This book analyzes the overall progress, potential challenges, and the industrialization of new catalysts in the near future. The primary emphasis is on experimental approaches from materials synthesis to device applications, however, there is also an introduction to relevant photochemistry concepts. This book is suitable for materials scientists and chemists who, through the use of photonics, are in continuous pursuit of improving the efficiencies of different devices used to capture solar energy for the generation of sustainable fuel. Sunlight-driven fuel synthesis is the most sustainable and potentially economical option for producing energy vectors through water splitting. Thus, this book focuses on the design of photocatalysts and water oxidation catalysts, as artificial photosynthesis and hydrogen fuel production via water oxidation (in place of fossil fuels) are two promising approaches towards renewable energy.

Author Biography:

Dr. Samrana Kazim is an Ikerbasque fellow and Group leader at Basque Centre for Materials, Applications, and Nanostructures (UPV). Before this, she worked as a tenured senior scientist, at Abengoa Research, a corporate research center of a multinational energy company in Spain. She obtained her doctoral degree (Ph.D.) in Materials chemistry. After finishing her Ph.D., she briefly worked as a post-doc at the Indian Institute of Technology (IIT Kanpur) and then moved to the Institute of Macromolecular Chemistry (IMC), Prague on an IUPAC/UNESCO fellowship and then later was a staff scientist there. She has authored over 80 research articles in reputed journals in the fields of material science, nanotechnology, and energy; also authored and edited book chapters and inventor of numerous patents in energy conversion and storage. Her research interests include synthesis and electro-optical characterization of organic semiconductors, hybrid nanostructured materials for optoelectronics applications, and perovskite solar cells. Muhammad Nawaz Tahir earned his Ph.D. in 2006 from Johannes Gutenberg University (JGU) of Mainz, Germany with the distinction “Summa Cum Laude” under the supervision of Prof. W. Tremel. Later, as a post-doctoral fellow, he underwent many research projects funded by DFG, MWFZ, and Max Plank Society. In 2010, he joined the Institute of Inorganic and Analytical Chemistry JGU Mainz, as senior scientist and group leader for nanomaterials synthesis, characterization, and applications. Since September 2017, he joined the Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia, as an Assistant Professor. His research publication list reflects interdisciplinary contributions. His research interests involve the synthesis of innovative nanomaterials, characterization, surface engineering for renewable energy conversion and energy storage applications. Shahzada Ahmad is an Ikerbasque professor; his scientific interests include materials for energy. From 2012 to 2017, he was program director at Abengoa Research, a corporate research center. His scientific publications list reflects his diverse fields of interest in the domains of physical chemistry and materials science, with a research mission to develop advanced materials for energy application. His work has led to the invitation to speak at many scientific or policy-based conferences. He is an inventor of patents, Chief Editor of “Emergent Materials”, editorial board member of journals, European research council consolidator grant awardee, an elected fellow of the European Academies, distinguished scientist (<40) World Economic Forum. He is a strong advocate for renewable energy and regularly writes popular science articles for the public at large at the World Economic Forum. Dr. Sanjay Mathur is the director of the Institute of Inorganic Chemistry at the University of Cologne in Germany. He is the Co-Director of the Institute of Renewable Energy Sources at the Xian Jiao Tong University, Xian, China and a World Class University Professor at the Chonbuk University in Korea. He also holds Visiting Professorships at the Central South University, China, Tokyo University of Agriculture and Technology, Japan and National Institute of Science Education and Research (NISER), India. He has been awarded the Honorary Doctorate of the Vilnius University in 2016.
Release date NZ
June 17th, 2024
Audience
  • Professional & Vocational
Contributors
  • Edited by Muhammad Nawaz Tahir
  • Edited by Samrana Kazim
  • Edited by Sanjay Mathur
  • Edited by Shahzada Ahmad
Pages
600
ISBN-13
9780323954945
Product ID
36769322

Customer previews

Nobody has previewed this product yet. You could be the first!

Write a Preview

Help & options

Filed under...