Non-Fiction Books:

On Some New Threshold-Type Time Series Models




Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

On Some New Threshold-Type Time Series Models by Bo Guan
Sorry, this product is not currently available to order


This dissertation, "On Some New Threshold-type Time Series Models" by Bo, Guan, 关博, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The subject of time series analysis has drawn significant attentions in recent years, since it is of tremendous interest to practitioners, as well as to academic researchers, to make statistical inferences and forecasts of future values of the interested variables. To do forecasting, parametric models are often required to describe the patterns of the observed data set. In order to describe data adequately, such statistical models should be established based on fundamental principles. Two threshold-type time series models, the buffered threshold autoregressive (BAR) model and the threshold moving-average (TMA) model are studied in this thesis. The most important contribution of this thesis is the extension of the classical threshold models via regime switching mechanisms that exhibit hysteresis to a new model called the buffered threshold model. For this type of new models, there is a buffer zone for the regime switching mechanism. The self-exciting buffered threshold autoregressive model has been thoroughly studied: a sufficient condition is given for the geometric ergodicity of the two-regime BAR process; the conditional least squares estimation is considered for the parameter estimation of the BAR model, and asymptotic properties including strong consistency and asymptotic distributions of the least square estimators are also derived. Monte Carlo experiments are conducted to give further support to the methodology developed for the new model. Two empirical examples are used to demonstrate the importance of the BAR model. Potential extensions for the basic buffer processes are discussed as well. Such extensions are expected to follow the development of classical threshold model and are motivated by their relationships with phenomena in the physical sciences. The proposed buffer process is more general than the classical threshold model, and it should be able to capture more nonlinear features exhibited by this nonlinear world than its predecessor. Although the theoretical understanding of the model is still at its infancy, it is believed that the buffer process will provide both researchers and practitioners with a useful tool to understand the nonlinear world. Moreover, some statistical properties of the threshold moving-average models are studied. Computer simulations have been extensively used, and some mathematical interpretation is attempted in the light of some existing research works. The model-building procedure for the TMA models is also reviewed. The effectiveness of some classical information criteria in selecting the correct TMA model is studied. A goodness-of-fit test is derived which would be useful in diagnostic checking the fitted TMA models. DOI: 10.5353/th_b5053385 Subjects: Time series analysis
Release date NZ
January 26th, 2017
Created by
Country of Publication
United States
colour illustrations
Open Dissertation Press
Product ID

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
Filed under...

Buy this and earn 841 Banana Points