Non-Fiction Books:

On Exciton–Vibration and Exciton–Photon Interactions in Organic Semiconductors

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Paperback / softback
$523.00
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks
Free Delivery with Primate
Join Now

Free 14 day free trial, cancel anytime.

Buy Now, Pay Later with:

4 payments of $130.75 with Afterpay Learn more

6 weekly interest-free payments of $87.17 with Laybuy Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 12-24 June using International Courier

Description

What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons’, are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules canvibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.  

Author Biography:

Antonios Alvertis grew up in Athens, Greece, where he also studied for his undergraduate degree at the National and Kapodistrian University of Athens. In 2014 he was awarded a scholarship from the German Academic Exchange Service (DAAD) to study for a M.Sc. degree in Organic and Molecular Electronics at the TU Dresden. In 2016, after receiving a scholarship from the Engineering and Physical Sciences Research Council of the United Kingdom, he moved to the University of Cambridge to undertake an M.Phil. in Scientific Computing and subsequently a Ph.D. in Physics at the Cavendish Laboratory. During his time in Cambridge, he worked on solar-energy harvesting in organic semiconductors, and specifically towards achieving a better theoretical understanding of the properties of fundamental energy carriers called "excitons", and their interactions with light and the vibrational motion of these materials. Antonios was officially awarded his Ph.D. in April of 2021, also receiving the Cavendish Ph.D. prize in Computational Physics in recognition of the impact of his research. At the time of writing, he is a postdoctoral researcher at the Cavendish Laboratory, and a visitor at UC Berkeley in the USA, having been awarded a research-exchange fellowship from the Cambridge-based Winton Programme for the Physics of Sustainability. His current research aims to contribute to a more unified understanding of the exciton physics of diverse materials beyond organic semiconductors, including low-dimensional systems. When Antonios is not thinking about excitons, he can often be found reading one of the books of Jack London, Leo Tolstoy or Fyodor Dostoevsky. Sometimes he can also be spotted running along the river Cam, or attempting to bake a cake.
Release date NZ
October 27th, 2022
Audience
  • Professional & Vocational
Edition
1st ed. 2021
Illustrations
60 Illustrations, color; 10 Illustrations, black and white; XIX, 202 p. 70 illus., 60 illus. in color.
Pages
202
ISBN-13
9783030854560
Product ID
36029703

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...