Non-Fiction Books:

Multiscale Modeling of Vascular Dynamics of Micro- and Nano-particles

Application to Drug Delivery System
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Hardback
$164.00
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks
Free Delivery with Primate
Join Now

Free 14 day free trial, cancel anytime.

Buy Now, Pay Later with:

4 payments of $41.00 with Afterpay Learn more

6 weekly interest-free payments of $27.33 with Laybuy Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 14-26 June using International Courier

Description

Recent advances witness the potential to employ nanomedicine and game-changing methods to deliver drug molecules directly to diseased sites. To optimize and then enhance the efficacy and specificity, the control and guidance of drug carriers in vasculature has become crucial. Current bottlenecks in the optimal design of drug carrying particles are the lack of knowledge about the transport of particles, adhesion on endothelium wall and subsequent internalization into diseased cells. To study the transport and adhesion of particle in vasculature, the authors have made great efforts to numerically investigate the dynamic and adhesive motions of particles in the blood flow. This book discusses the recent achievements from the establishment of fundamental physical problem to development of multiscale model, and finally large scale simulations for understanding transport of particle-based drug carriers in blood flow.

Author Biography:

Huilin Ye is a PhD candidate in Mechanical Engineering at University of Connecticut. His research interest is mainly of developing high-fidelity computational methods in biosystem, especially for the blood flow. The novel numerical scheme has been successfully applied in the targeted drug delivery system for capturing the dynamic motion of micro- and nano-particles in blood flow. Ye's works have been recognized by fellowships and awards including Generic Electric Fellowship for Innovation and Best paper award of FDTC Student paper competition in EMI(2018) from ASCE. Zhiqiang Shen is a PhD candidate in Mechanical Engineering at University of Connecticut. His current research interests focus on multi-scale modelling of nanoparticle mediated drug delivery and polymeric materials. Shen's works have been recognized by fellowships and awards including Generic Electric Fellowship for Innovation (2017) and ASME SPC Award (2019). Dr. Ying Li joined the University of Connecticut in 2015 as an Assistant Professor in the Department of Mechanical Engineering. He received his Ph.D. in 2015 from Northwestern University, focusing on the multiscale modeling of soft matter and related biomedical applications. Dr. Li's achievements in research have been widely recognized by fellowships and awards including Best Paper award from ASME Global Congress on NanoEngineering for Medicine and Biology, International Institute for Nanotechnology Outstanding Researcher Award, Chinese Government Award for Outstanding Students Abroad and Ryan Fellowship.
Release date NZ
January 30th, 2020
Audience
  • Professional & Vocational
Pages
111
ISBN-13
9781643277936
Product ID
32930948

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...