Non-Fiction Books:

Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation

Applications to Porous Media and MEMS
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

By:

Format:

Hardback
$292.00
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks
Free Delivery with Primate
Join Now

Free 14 day free trial, cancel anytime.

Buy Now, Pay Later with:

4 payments of $73.00 with Afterpay Learn more

6 weekly interest-free payments of $48.67 with Laybuy Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 14-26 June using International Courier

Description

This book provides a comprehensive introduction to the kinetic theory for describing flow problems from molecular scale, hydrodynamic scale, to Darcy scale. The author presents various numerical algorithms to solve the same Boltzmann-like equation for different applications of different scales, in which the dominant transport mechanisms may differ. This book presents a concise introduction to the Boltzmann equation of the kinetic theory, based on which different simulation methods that were independently developed for solving problems of different fields can be naturally related to each other. Then, the advantages and disadvantages of different methods will be discussed with reference to each other. It mainly covers four advanced simulation methods based on the Boltzmann equation (i.e., direct simulation Monte Carlo method, direct simulation BGK method, discrete velocity method, and lattice Boltzmann method) and their applications with detailed results. In particular, many simulations are included to demonstrate the applications for both conventional and unconventional reservoirs.   With the development of high-resolution CT and high-performance computing facilities, the study of digital rock physics is becoming increasingly important for understanding the mechanisms of enhanced oil and gas recovery. The advanced methods presented here have broad applications in petroleum engineering as well as mechanical engineering , making them of interest to researchers, professionals, and graduate students alike. At the same time, instructors can use the codes at the end of the book to help their students implement the advanced technology in solving real industrial problems.

Author Biography:

Jun Li has been a Research Engineer since May 2014, the Center for Integrative Petroleum Research (CIPR), at CPG of KFUPM, Kingdom of Saudi Arabia. He had independently proposed the DSBGK method to efficiently and accurately solve the B.G.K equation, a good approximation of the Boltzmann equation, and developed the MPI Fortran software NanoGasSim using the DSBGK method for the pore-scale study of shale gas permeability and gas flows in MEMS and vacuum system at high Knudsen (Kn) number. He also proposed an upscaled lattice Boltzmann method for multiscale simulation of conventional reservoirs. 
Release date NZ
September 6th, 2019
Author
Audience
  • Professional & Vocational
Edition
1st ed. 2020
Illustrations
36 Illustrations, color; 28 Illustrations, black and white; XII, 164 p. 64 illus., 36 illus. in color.
Pages
164
ISBN-13
9783030264659
Product ID
30821271

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...