Travel Books:

Low-cost space-borne data for inundation modelling: topography, flood extent and water level

Sorry, this product is not currently available to order

Here are some other products you might consider...

Low-cost space-borne data for inundation modelling: topography, flood extent and water level

UNESCO-IHE PhD Thesis
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

By:

Format:

Paperback / softback
Unavailable
Sorry, this product is not currently available to order

Description

This thesis aims to explore the potential and limitations of low-cost, space-borne data in flood inundation modelling under unavoidable, intrinsic uncertainty. In particular, the potential in supporting hydraulic modelling of floods of: NASA’s SRTM (Shuttle Radar Topographic Mission) topographic data, SAR (Synthetic Aperture Radar) satellite imagery of flood extents and radar altimetry of water levels are analyzed in view of inflow and parametric uncertainty. To this end, research work has been carried out by either following a model calibration-evaluation approach or by explicitly considering major sources of uncertainty within a Monte Carlo framework. To generalize our findings, three river reaches with various scales (from medium to large) and topographic characteristics (e.g. valley-filling, two-level embankments, large and flat floodplain) are used as test sites. Lastly, an application of SRTM-based flood modelling of a large river is conducted to highlight the challenges of predictions in ungauged basins. This research indicates the potential and limitations of low-cost, space-borne data in supporting flood inundation modelling under uncertainty, including findings related to the usefulness of these data according to modelling purpose (e.g. re-insurance, planning, design), characteristics of the river and considerations of uncertainty. The upcoming satellite missions, which could potentially impact the way we model flood inundation patters, are also discussed.

Author Biography:

Kun Yan was born on 31st December 1985, in Bengbu, Anhui Province, China. Kun received his Bachelor degree from the College of Hydrology and Water Resourses, Hohai University in May 2008. He then enrolled in the Master program of Ecohydrology at Hohai University. A year later, he moved to the Netherlands and joined the Master program of Hydroinformatics of UNESCO-IHE. He started his PhD at UNESCO-IHE in July 2011, and after two months obtained his MSc degree. His PhD topic is the integration of low-cost space-borne data into hydraulic modelling of floods. Kun was also involved in the EC FP7 KULTURisk project, which aims at developing a culture of risk prevention for natural disasters including floods. Kun`s research interests including remote sensing, flood inundation modelling and uncertainty. He is now an advisor/researcher at Deltares.
Release date NZ
October 29th, 2015
Author
Audience
  • Postgraduate, Research & Scholarly
Pages
134
Dimensions
170x240x10
ISBN-13
9781138028753
Product ID
23160367

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...