Non-Fiction Books:

Direct Methods in the Theory of Elliptic Equations

By

Format

Hardback

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Direct Methods in the Theory of Elliptic Equations by J Necas
$332.00

or 4 payments of $83.00 with . Learn more

In stock with supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 10-14 days

Availability

Delivering to:

Estimated arrival:

  • Around 9-12 March using standard courier delivery

Description

Necas' book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Necas' work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library. The volume gives a self-contained presentation of the elliptic theory based on the "direct method", also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame's system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.

Author Biography

Jindrich Necas, Professor Emeritus of the Charles University in Prague, Distinguished Researcher Professor at the University of Northern Illinois, DeKalb, Doctor Honoris Causa at the Technical University of Dresden, a leading Czech mathematician and a world-class researcher in the field of partial differential equations. Author or coauthor of 12 monographs, 7 textbooks, and 185 research papers. High points of his research include his contribution to boundary regularity theory for linear systems his contributions to regularity theory of variational integrals, such as his 1977 solution of a long-standing question directly to Hilbert's 19th problemhis contributions to mathematical theory of the Navier-stokes equations, including his 1995 solution of an important problem raised in a classical 1934 paper by J. Leray.In 1998 he was awarded the Order of Merit of the Czech Republic by President Vaclav Havel.
Release date NZ
February 28th, 2010
Author
Contributors
Contributions by Christian G. Simader Preface by Sarka Necasova Translated by Alois Kufner Translated by Gerard Tronel
Country of Publication
Germany
Edition
1st ed. Corr. 3rd printing 2012
Illustrations
biography
Imprint
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Pages
372
Dimensions
156x234x22
ISBN-13
9783642104541
Product ID
6872008

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...