Non-Fiction Books:

Design of Crystal Structures Using Hydrogen Bonds on Molecular-Layered Cocrystals and Proton–Electron Mixed Conductor

Sorry, this product is not currently available to order

Here are some other products you might consider...

Design of Crystal Structures Using Hydrogen Bonds on Molecular-Layered Cocrystals and Proton–Electron Mixed Conductor

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Hardback
Unavailable
Sorry, this product is not currently available to order

Description

This thesis addresses the design of crystal structures using hydrogen bonds. In particular, it focuses on the design of functionalities and the control over the packing of molecular assemblies, based on molecular designs. Firstly, the synthesis and evaluation of a proton–electron mixed conducting charge transfer salt is reported. Focusing on the difference in the strength of hydrogen bonds and weaker intermolecular interactions, a system was rationally designed and constructed where electron-conducting molecular wires were encapsulated within a proton-conducting matrix. Next, the investigation of structural phase transitions in a cocrystal consisting of hydrogen-bonded two-dimensional molecular assemblies is reported. Drastic rearrangements of hydrogen-bonded molecular assemblies in the cocrystal led to single-crystal-to-single-crystal phase transitions, resulting in anisotropic changes in the crystal shape. Furthermore, chemical modification of a component molecule in the cocrystal is reported. The modification afforded control over the stacking patterns of the two-dimensional molecular assemblies, i.e., sheets, and the mechanism was discussed considering the intersheet intermolecular interactions and molecular motion. It is suggested that hydrogen bonds are beneficial to construct molecular assemblies in molecular crystals because of their strength and well-defined directionality, and the consideration of coexisting weaker intermolecular interactions can lead to the design of whole crystal structures and, hence, functionalities. This thesis benefits students and researchers working on solid-state chemistry by presenting various methods for characterizing and evaluating the properties of molecular solids.

Author Biography:

Masaki Donoshita received his B.Sc., M.Sc., and Ph.D. in chemistry from Kyoto University under the supervision of Professor Hiroshi Kitagawa in 2017, 2019, and 2022, respectively. He is currently an assistant professor at Institute for Materials Chemistry and Engineering, Kyushu University. 
Release date NZ
January 4th, 2024
Audience
  • Professional & Vocational
Edition
1st ed. 2024
Illustrations
49 Illustrations, color; 8 Illustrations, black and white; XII, 79 p. 57 illus., 49 illus. in color.
Pages
79
ISBN-13
9789819970612
Product ID
38183679

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...