Non-Fiction Books:

Deep Neural Evolution

Deep Learning with Evolutionary Computation
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Paperback / softback
Deep Neural Evolution
$300.00

or 4 payments of $75.00 with Learn more

Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships in 10-14 days
Free Delivery with Primate
Join Now or upgrade at checkout

Availability

Delivering to:

Estimated arrival:

  • Around 13-18 August using standard courier service

Description

This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL. EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research -from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN). This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice.

Author Biography

Hitoshi Iba received his Ph.D. degree from The University of Tokyo, Japan, in 1990. From 1990 to 1998, he was with the Electro Technical Laboratory in Ibaraki, Japan. Since 1998, he has been with The University of Tokyo, where he is currently a professor in the Graduate School of Information Science and Technology. His research interests include evolutionary computation, artificial life, artificial intelligence, and robotics. He is an associate editor of the Journal of Genetic Programming and Evolvable Machines (GPEM). Dr. Iba is also is an underwater naturalist and experienced Professional Association of Diving Instructors (PADI) divemaster, having completed more than a thousand dives. Nasimul Noman received his Ph.D. degree from The University of Tokyo, Japan, in 2007. He was a faculty member in the Department of Computer Science and Engineering, University of Dhaka, Bangladesh, from 2002 to 2012. In 2013, he joined the School of Electrical Engineering and Computing at The University of Newcastle, Australia, and currently he is working as a senior lecturer there. His research interests include evolutionary computation, computational biology, bioinformatics, and machine learning.
Release date NZ
May 22nd, 2021
Audience
  • Professional & Vocational
Contributors
  • Edited by Hitoshi Iba
  • Edited by Nasimul Noman
Country of Publication
Singapore
Edition
1st ed. 2020
Illustrations
107 Illustrations, color; 114 Illustrations, black and white; XII, 438 p. 221 illus., 107 illus. in color.
Imprint
Springer Verlag, Singapore
Pages
438
Dimensions
165x220x25
ISBN-13
9789811536878
Product ID
34847104

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...