Non-Fiction Books:

Canard Cycles

From Birth to Transition
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!
$365.00
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks
Free Delivery with Primate
Join Now

Free 14 day free trial, cancel anytime.

Buy Now, Pay Later with:

4 payments of $91.25 with Afterpay Learn more

6 weekly interest-free payments of $60.83 with Laybuy Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 20 Jun - 2 Jul using International Courier

Description

This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh–Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.

Author Biography:

Peter De Maesschalck, born in 1975, has been at Hasselt University, Belgium, for much of his career. His research focuses on slow-fast systems in low dimensional systems both from a qualitative point of view and from the point of view of asymptotic expansions. Part of his research is inspired by theoretical questions such as Hilbert's 16th problem on limit cycles of polynomial systems, another part is motivated by applications of slow-fast systems in, e.g., neurological models. Freddy Dumortier, born in 1947, emeritus professor at Hasselt University, is former president of the Belgian Mathematical Society and is currently permanent secretary of the Royal Flemish Academy of Belgium for Science and the Arts. He is the author of many papers and his main results deal with singularities and their unfolding, bifurcation theory, Liénard equations, Hilbert's 16th problem, slow-fast systems and the wave speed in reaction-diffusion equations. Robert Roussarie,born in 1944, is emeritus professor of the University of Bourgogne-Franche Comté. After a career at the CNRS he was professor at the Institut de Mathématique de Bourgogne. He worked on the theory of foliations, of singularities in differential geometry, bifurcations of vector fields and finally slow-fast systems. He also contributed to applied research on ferro-resonance in electrical networks, systems of ecological populations, systems in control theory and free interface problems in combustion theory.
Release date NZ
August 9th, 2022
Pages
408
Edition
1st ed. 2021
Audience
  • Professional & Vocational
Illustrations
42 Illustrations, color; 59 Illustrations, black and white; XXI, 408 p. 101 illus., 42 illus. in color.
ISBN-13
9783030792350
Product ID
35926710

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...