Non-Fiction Books:

Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint

Format

Hardback

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint by Haoyun Tu
$339.99
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 2-3 weeks

Availability

Delivering to:

Estimated arrival:

  • Around 24-31 October using standard courier delivery

Description

In this thesis, the author investigates experimentally and numericallythe fracture behavior of an electron beam welded joint made fromtwo butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-Needleman (GTN) model and the cohesive zone model (CZM) wereadopted to predict the crack propagation of thick compact tension (CT)specimens. Advantages and disadvantages of the three mentioned modelsare discussed. The cohesive zone model is suggested as it is easy to usefor scientists & engineers because the CZM has less model parametersand can be used to simulate arbitrary crack propagation. The resultsshown in this thesis help to evaluate the fracture behavior of a metallicmaterial. A 3D optical deformation measurement system (ARAMIS) andthe synchrotron radiation-computed laminography (SRCL) techniquereveal for the first time the damage evolution on the surface of the sampleand inside a thin sheet specimen obtained from steel S355. Damageevolution by void initiation, growth and coalescence are visualized in2D and 3D laminographic images. Two fracture types, i.e., a flat crackpropagation originated from void initiation, growth and coalescenceand a shear coalescence mechanism are visualized in 2D and 3D imagesof laminographic data, showing the complexity of real fracture. Inthe dissertation, the 3D Rousselier model is applied for the first timesuccessfully to predict different microcrack shapes before shear cracksarise by defining the finite elements in front of the initial notch withinhomogeneous f0-values. The influence of the distribution of inclusionson the fracture shape is also discussed. For the analyzed material, ahomogeneous distribution of particles in the material provides thehighest resistance to fracture.

Author Biography

Haoyun Tu is an Assistant Professor at the School of Aerospace Engineering and Applied Mechanics, Tongji University, PR China. He received his BE and ME from Northwestern Polytechnical University, China and Dr.-Ing. from University of Stuttgart, Germany. His research interests are on fracture mechanism of metals and welded joints from metals with experimental and finite element methods as well as on characterization techniques such as 3D optical deformation measurement and Synchrotron radiation-computed laminography (SRCL).
Release date NZ
October 23rd, 2017
Author
Country of Publication
Switzerland
Edition
1st ed. 2018
Illustrations
163 Illustrations, color; 27 Illustrations, black and white; XVII, 171 p. 190 illus., 163 illus. in color.
Imprint
Springer International Publishing AG
Pages
171
ISBN-13
9783319672762
Product ID
26877137

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...

Buy this and earn 1,528 Banana Points