Non-Fiction Books:

Microfluidic Cell Culture Systems

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Paperback / softback
$656.00
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks
Free Delivery with Primate
Join Now

Free 14 day free trial, cancel anytime.

Buy Now, Pay Later with:

4 payments of $164.00 with Afterpay Learn more

6 weekly interest-free payments of $109.33 with Laybuy Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 6-18 June using International Courier

Description

Techniques for microfabricating intricate microfluidic structures that mimic the microenvironment of tissues and organs, combined with the development of biomaterials with carefully engineered surface properties, have enabled new paradigms in and cell culture-based models for human diseases. The dimensions of surface features and fluidic channels made accessible by these techniques are well-suited to the size scale of biological cells. Microfluidic Cell Culture Systems applies design and experimental techniques used in in microfluidics, and cell culture technologies to organ-on-chip systems. This book is intended to serve as a professional reference, providing a practical guide to design and fabrication of microfluidic systems and biomaterials for use in cell culture systems and human organ models. The book covers topics ranging from academic first principles of microfluidic design, to clinical translation strategies for cell culture protocols. The goal is to help professionals coming from an engineering background to adapt their expertise for use in cell culture and organ models applications, and likewise to help biologists to design and employ microfluidic technologies in their cell culture systems. This 2nd edition contains new material that strengthens the focus on in vitro models useful for drug discovery and development. One new chapter reviews liver organ models from an industry perspective, while others cover new technologies for scaling these models and for multi-organ systems. Other new chapters highlight the development of organ models and systems for specific applications in disease modeling and drug safety. Previous chapters have been revised to reflect the latest advances.

Author Biography:

Jeffrey T. Borenstein is Laboratory Technical Staff at the Charles Stark Draper Laboratory in Cambridge, Massachusetts, USA. Dr. Borenstein is a Technical Director for several of Draper’s programs in artificial organs, tissue engineering and implantable devices. His expertise is in MEMS fabrication technology, biological microsystems and the development of microdevices for therapeutic clinical applications. Dr. Borenstein currently serves as Principal Investigator for projects involving the application of microsystems technology towards engineered tissue constructs for organ assist devices and drug discovery, as well as implantable drug delivery systems for hearing loss and other diseases. These programs are funded by the Department of Defense, the National Institutes of Health and several commercial sponsors. Vishal Tandon is a Research Fellow at the Biomedical Engineering Center, Draper University, USA. His research focuses on the design and testing of implantable microfluidic devices for drug delivery into the ear. Sarah Tao is Senior Manager, New Technologies at CooperVision, Inc. She was previously Senior Member Technical Staff, MEMS Design Group at Draper University, and Research Professor Equivalent, Bioengineering and Therapeutic Sciences at the University of California, San Francisco, USA. Her research interests lie in the areas of biomaterials, nanotechnology, regenerative medicine, drug delivery, BioMEMS, microfluidics and cell culture. Dr. Charest is director of in vitro model and organ-assist work at Draper Laboratory. The work of his teams leverages micro- and nano-fabrication along with advanced machining techniques to create systems which recapitulate native tissue and organ architecture, morphology, and function in vitro. The systems span applications from medical devices to screening platforms for pharmaceuticals, and impact fields of use in various organ and tissue types such as tumor, kidney, vascular tissue and lung. Dr. Charest graduated from Georgia Tech with an MS and PhD in Mechanical Engineering and from Penn State with a BS in Mechanical Engineering.
Release date NZ
September 1st, 2018
Audience
  • Professional & Vocational
Contributors
  • Edited by Jeffrey T. Borenstein
  • Edited by Joseph L. Charest
  • Edited by Sarah L Tao
  • Edited by Vishal Tandon
Edition
2nd edition
Pages
396
ISBN-13
9780128136713
Product ID
27254899

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...