Non-Fiction Books:

Implementing Spectral Methods for Partial Differential Equations

Algorithms for Scientists and Engineers

Format

Hardback

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Implementing Spectral Methods for Partial Differential Equations by David A. Kopriva
$253.99
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 10-14 days

Availability

Delivering to:

Estimated arrival:

  • Around 5-10 September using standard courier delivery

Description

This book is aimed to be both a textbook for graduate students and a starting point for applicationsscientists. It is designedto show how to implementspectral methods to approximate the solutions of partial differential equations. It presents a syst- atic development of the fundamental algorithms needed to write spectral methods codes to solve basic problems of mathematical physics, including steady potentials, transport, and wave propagation. As such, it is meant to supplement, not replace, more general monographs on spectral methods like the recently updated "Spectral Methods: Fundamentals in Single Domains" and "Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics" by Canuto, Hussaini, Quarteroni and Zang, which provide detailed surveys of the variety of methods, their performance and theory. I was motivated by comments that I have heard over the years that spectral me- ods are "too hard to implement." I hope to dispel this view-or at least to remove the "too". Although it is true that a spectral code is harder to hack together than a s- ple ?nite difference code (at least a low order ?nite difference method on a square domain), I show that only a few fundamental algorithms for interpolation, differen- ation, FFT and quadrature-the subjects of basic numerical methods courses-form the building blocks of any spectral code, even for problems in complex geometries. Ipresentthealgorithmsnotonlytosolveproblemsin1D,but2Daswell,toshowthe ?exibility of spectral methods and to make as straightforward as possible the tr- sition from simple, exploratory programs that illustrate the behavior of the methods to application programs.

Author Biography

David Kopriva is Professor of Mathematics at the Florida State University, where he has taught since 1985. He is an expert in the development, implementation and application of high order spectral multi-domain methods for time dependent problems. In 1986 he developed the first multi-domain spectral method for hyperbolic systems, which was applied to the Euler equations of gas dynamics.
Release date NZ
May 12th, 2009
Country of Publication
Netherlands
Edition
2009 ed.
Illustrations
XVIII, 397 p.
Imprint
Springer
Pages
397
Dimensions
156x234x23
ISBN-13
9789048122608
Product ID
3073140

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...

Buy this and earn 1,142 Banana Points