Travel Books:

Characterizing the Orbital and Dynamical State of Extrasolar Multiple-Planet Systems with Radial Velocity Measurements

Format

Hardback

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Characterizing the Orbital and Dynamical State of Extrasolar Multiple-Planet Systems with Radial Velocity Measurements by Xianyu Tan
Unavailable
Sorry, this product is not currently available to order

Description

This dissertation, "Characterizing the Orbital and Dynamical State of Extrasolar Multiple-planet Systems With Radial Velocity Measurements" by Xianyu, Tan, 谭先瑜, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Extrasolar planetary surveys have discovered about 780 extrasolar planets and more than 100 multiple planetary systems to date, with the largest fraction of them being confirmed by the radial velocity detection method. Multiple planetary systems, especially those contain pairs of planets in mean-motion resonances, are particularly interesting because their current orbital architectures provide constraints for orbital evolution of planetary systems. Precisely determining the orbital and dynamical state of multiple planetary systems with radial velocity measurements is important. New results from an analysis of radial velocity data of the HD 82943 planetary system based on 10 years of measurements obtained with the Keck telescope is presented in this thesis. Previous studies have shown that the HD 82943 system has two planets that are likely in 2:1 MMR, with the orbital periods about 220 and 440 days (Lee et al. 2006). However, alternative fits that are qualitatively different have also been suggested, with the two planets in 1:1 resonance or the addition of a third planet possibly in a Laplace 4:2:1 resonance with the other two (Goździewski & Konacki 2006; Beauge et al. 2008). Here based on the X DEGREES2 minimization method combined with parameter grid search, the orbital parameters and dynamical states of the qualitatively different types of fits have been investigated. The results support the coplanar 2:1 MMR configuration for this system and fits of the 1:1 resonance and the 3-planet Laplace resonance are ruled out according to X DEGREES2 statistic and dynamical instability. The inclination of the HD 82943 system is well constrained at about 20C. The system contains two planets with masses of about 4.64 MJ and 4.66 MJ and orbital periods of about 219 and 442 days for the inner and outer planet, respectively. The best fit is dynamically stable with two resonance angles θ 1 = λ1 - 2λ2 + ϖ1 andθ 2 = λ1 - 2λ2 + ϖ 2 librating around 0. Based on the best fit, the origin of the 2:1 MMR of the HD 82943 planetary system has been explored by N-body simulations with forced inward migration of the outer planet. This research has demonstrated the importance of dynamical fitting for multiple planetary systems with radial velocity measurements. It also fulfills the cases of planetary systems in mean-motion resonances such that more generic understanding of the orbital evolution of planetary systems can be obtained. DOI: 10.5353/th_b5016279 Subjects: Extrasolar planets
Release date NZ
January 26th, 2017
Author
Contributor
Created by
Country of Publication
United States
Illustrations
colour illustrations
Imprint
Open Dissertation Press
Dimensions
216x279x10
ISBN-13
9781361313121
Product ID
26644598

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
Filed under...

Buy this and earn 835 Banana Points