Non-Fiction Books:

Cambridge Series in Statistical and Probabilistic Mathematics: Series Number 45



Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Cambridge Series in Statistical and Probabilistic Mathematics: Series Number 45 by Vladas Pipiras
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 10-14 days


Delivering to:

Estimated arrival:

  • Around 9-14 November using standard courier delivery


This modern and comprehensive guide to long-range dependence and self-similarity starts with rigorous coverage of the basics, then moves on to cover more specialized, up-to-date topics central to current research. These topics concern, but are not limited to, physical models that give rise to long-range dependence and self-similarity; central and non-central limit theorems for long-range dependent series, and the limiting Hermite processes; fractional Brownian motion and its stochastic calculus; several celebrated decompositions of fractional Brownian motion; multidimensional models for long-range dependence and self-similarity; and maximum likelihood estimation methods for long-range dependent time series. Designed for graduate students and researchers, each chapter of the book is supplemented by numerous exercises, some designed to test the reader's understanding, while others invite the reader to consider some of the open research problems in the field today.

Author Biography

Vladas Pipiras is Professor of Statistics and Operations Research at the University of North Carolina, Chapel Hill. His research focuses on stochastic processes exhibiting long-range dependence, self-similarity, and other scaling phenomena, as well as on stable, extreme-value and other distributions possessing heavy tails. His other current interests include high-dimensional time series, sampling issues for 'big data', and stochastic dynamical systems, with applications in econometrics, neuroscience, engineering, computer science, and other areas. He has written over fifty research papers and is coauthor of A Basic Course in Measure and Probability: Theory for Applications (with Ross Leadbetter and Stamatis Cambanis, Cambridge, 2014) Murad S. Taqqu's research involves self-similar processes, their connection to time series with long-range dependence, the development of statistical tests, and the study of non-Gaussian processes whose marginal distributions have heavy tails. He has written more than 250 scientific papers and is coauthor of Stable Non-Gaussian Random Processes (with Gennady Samorodnitsky, 1994). Professor Taqqu is a Fellow of the Institute of Mathematical Statistics and has been elected Member of the International Statistical Institute. He has received a number of awards, including a John Simon Guggenheim Fellowship, the 1995 William J. Bennett Award, the 1996 Institute of Electrical and Electronics Engineers W. R. G. Baker Prize, the 2002 EURASIP Best Paper in Signal Processing Award, and the 2006 Association for Computing Machinery Special Interest Group on Data Communications (ACM SIGCOMM) Test of Time Award.
Release date NZ
April 18th, 2017
Country of Publication
United Kingdom
8 Tables, black and white; 58 Line drawings, black and white
Cambridge University Press
Product ID

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...

Buy this and earn 929 Banana Points